| 储能

请登录

注册

探索电网尖端科技 支撑坚强智能电网 中国电科院做了哪些工作?

2018-01-05 16:23:40 大云网
A A
中国电力科学研究院有限公司(以下简称中国电科院)是国家电网公司直属科研单位,成立于1951年,重点开展电网共性和基础性关键技术研发、试
中国电力科学研究院有限公司(以下简称中国电科院)是国家电网公司直属科研单位,成立于1951年,重点开展电网共性和基础性关键技术研发、试验检测和技术标准制定,并为国家电网公司提供全面的技术支撑。建院以来,中国电科院承担各类国家科技计划项目近400项,逐步形成了世界上功能最完整、试验能力最强、技术水平最高的特高压、大电网试验研究体系,在特高压交直流输变电、大电网控制、智能电网等领域取得一批创新成果。2012年获得国家科技进步特等奖,2016年获得国家科技进步一等奖1项、二等奖3项。

党的十九大提出,要瞄准世界科技前沿,强化基础研究,实现前瞻性基础研究、引领性原创成果重大突破;加强应用基础研究,拓展实施国家重大科技项目,突出关键共性技术、前沿引领技术、现代工程技术、颠覆性技术创新。国家电网公司着眼党和国家工作大局,深入推进科技发展战略,建设“一强三优”现代公司。按照国家电网公司要求,中国电科院确定了“全面落实‘两个转变’新要求,聚焦重点发展方向,全面提升科技创新能力和支撑服务能力,加快创建‘两个中心’”的奋斗目标。

在公司科技创新战略引领下,中国电科院提出一系列创新管理举措,科技研发效率进一步提升。一是强化科研顶层设计,使创新资源更加集中。初步形成“顶层设计先行、指南申报落地、战略规划兼容”的研发策划模式,依托顶层设计凝练聚焦技术新方向,培育未来业务增长点,并在重大战略方向的遴选上支撑顶层设计,促进科技资源进一步向核心技术方向聚集,在资源有限的情况下,增强了科研投入的系统性、全局性和协同性。通过科研顶层设计,凝练出了47个重点研究方向、376项关键技术、38项核心技术、8个中长期战略性科研方向,基本确立了中国电科院未来若干年的核心重点技术方向。二是实施研发组织优化,使综合优势更加凸显。初步建立“总体设计、集中攻关、分散实施”的跨专业联合攻关机制,形成院内单位互为补充、相互促进、互通有无的协同攻关体系。探索试行项目负责人制,强化项目负责人在人员、资源方面的支配、考核权,调动和激发了科研人员创新积极性。通过优化研发组织模式,五年来先后攻克了电力系统全过程动态仿真、特高压变电设备状态预警、大规模新能源发电并网、配电网自愈控制、规模化储能系统集成等一大批关键技术难题。

随着国家科技计划改革方案逐步实施,国家有关部门于2016年首次采用国家重点研发计划专项形式组织项目申报。在国资委、国家电网公司的大力支持和有序组织下,中国电科院积极参与各相关专项申报,在2016年和2017年共计参与8个专项、47个项目的申报,其中31个项目(8项牵头、23项配合)获批立项,连续两年成为智能电网领域中承担项目最多的单位。

【实现高端绝缘材料国产化 提升电气设备可靠性——特高压电气设备用纳米复合绝缘材料与应用关键技术】

环氧复合材料是特高压电气装备的关键绝缘材料,用量大,且不可替代。在我国特高压工程建设过程中,特高压电气设备的关键件——环氧绝缘件和饱和电抗器都遇到了绝缘材料性能与国外存在差距的问题。

关键绝缘材料国产化

特高压工程建设之初,盆式绝缘子材料大部分以进口为主,国外如ABB、三菱、东芝、日立等均掌握特高压盆式绝缘子材料关键技术,其中东芝特高压盆式绝缘子材料具备高耐热、高韧性等特点,玻璃化温度达到130℃,拉伸强度达到80MPa,在特高压工程建设中应用广泛。国内开关制造企业如平高、西开、新东北电气等在环氧浇注配方、设计结构及工艺技术方面均存在较大差距,材料强度均在75MPa以下,玻璃化温度为120℃左右。

特高压盆式绝缘子在浇注成型过程中需要解决应力控制、缺陷控制、温度场控制等多项控制难题,深入到绝缘子用环氧树脂浇注料层面,则需要从浇注料固化产物的交联网络结构、多层次微观结构、有机—无机界面相容性、纳米粒子分散与改性等方面对浇注料的配方进行优化。国家重点研发计划项目“特高压电气设备用纳米复合绝缘材料与应用关键技术”将从环氧树脂及其固化剂的分子结构设计与模拟、纳米粒子的合成与表面调控及分散、无机填料的表面改性、环氧复合绝缘材料浇注料的配方研制及批量化生产,多个层面开展系统研究,全面掌握环氧复合绝缘材料的配方和批量化生产技术。

对于换流阀用饱和电抗器,中空线圈匝与匝之间需采用树脂进行固定,其导热性将直接影响电抗器内部的温度分布。据报道,电抗器用树脂绝缘材料的热导率(0.7—0.8W/(m˙K))和耐热等级(玻璃化转变温度90℃—100℃)偏低。如果可以将其热导率提高1倍甚至更高,达到1.5W/(m˙K)以上,将极大改善铁芯的散热效果,大幅度降低铁芯温度,提高绝缘材料的使用寿命,同时能有效控制电抗器绝缘设计的难度和制造成本,保证设备安全稳定运行。

项目将对直流换流阀饱和电抗器用高导热绝缘封装材料关键技术展开研究,攻克目前提高绝缘封装材料热导率的瓶颈问题,有效降低现有阀电抗器铁芯的工作温度,使其在设计温度范围内稳定安全可靠运行。研究成果将为生产厂家对电抗器封装材料的配方技术、制备工艺等方面进行有针对性地改进提供方向,提升我国在电抗器领域的技术和生产能力,为完全摆脱国外公司在高压直流输电装备中的制约奠定基础。

提升设备可靠性

近年来,采用进口环氧树脂,国内研制出特高压盆式绝缘子等环氧绝缘件,已广泛用于特高压交流工程,然而不管是进口材料的国产化绝缘件还是进口绝缘件,其绝缘失效一直是特高压电气设备故障的主要原因。另外,由于我国是国际上完整掌握特高压输电技术的国家,并且也是世界上唯一有特高压工程商业化运行经验的国家。用国外进口的环氧复合材料生产的特高压盆式绝缘子也发生过多次闪络问题,尚不能很好地满足运行要求。环氧绝缘件的故障中,气固界面的闪络问题占环氧绝缘件故障的80%以上,并且难以预测。环氧绝缘件闪络已成为制约特高压电气设备可靠性进一步提升的瓶颈。为了解决这类问题,除了前文提到的加强对于基础材料本身性能的研究,还要从设计、制造与运维诊断等方面加以系统解决。

本项目研究制备工艺、纳米添加对气固界面特性的影响,掌握气固界面场强耐受特性与电场设计准则;通过建立环氧复合绝缘系统多场耦合仿真模型,研究多场协同设计方法。结合绝缘件表面状态调控,提高气固界面耐受场强。

以现在的检测手段,很多绝缘件内部或沿面的微小缺陷难以发现,因此项目研究脉冲电流局放检测和特高频局放检测优化方法,以及X射线绝缘缺陷激励技术、新型光纤超声局放检测技术、陡波冲击试验技术,并研制金属封闭式陡波冲击电压发生器,来提高绝缘件微缺陷检测技术的灵敏度。

同时,研究多场耦合条件下绝缘件表面缺陷发生、发展规律,掌握绝缘件绝缘失效原理,提出多源信息融合的绝缘件缺陷检测技术, 从而实现对缺陷的早期诊断,建立运行中绝缘件缺陷危害状态评估方法与运维策略。降低绝缘件的故障率,提升设备运行的可靠性。

本项目的实施,将使我国在关键材料、设计制造和运维诊断等方面达到国际先进水平,形成特高压电气设备用国产化环氧纳米复合材料配方体系,可在超、特高压方面全面替代进口。同时将培养一批从事特高压电气设备关键材料与应用和检测相关技术的创新人才,推动国内特高压电气行业的技术进步,为特高压电气设备研发及应用提供坚实的技术、装备及人才保障。
 

【研发环保绝缘气体 助推电力设备环保升级——环保型管道输电关键技术】

项目研制的环保气体全球变暖系数值仅为SF6的5%,可带动气体绝缘设备环保化升级换代。

研发新型绝缘气体,给电力设备输送新鲜血液,与环境友好相处,给电力工作者提出了巨大的挑战。

世界难题

国际上各大电力装备巨头都在积极研发新型环保气体,美国3M公司、GE公司和ABB公司都取得了突破,正在逐渐形成技术垄断优势。面对国外公司强劲的领跑优势,国内几代电力人呕心沥血,但仍主要停留在实验室研究阶段,“我国替代六氟化硫的环保气体研究仍处于探索阶段,与国外同类技术相比差距较大,相关研究亟待提速和深入。”国家重点研发计划项目“环保型管道输电关键技术”负责人、中国电力科学研究院副院长高克利这样介绍。

当输电线路遇到高落差、过江河等特殊地理环境条件时,采用气体绝缘管道输电近年来逐渐成为了架空线路的重要补充,中国电力科学研究院组织平高集团、西开电气等单位率先研制出

大云网官方微信售电那点事儿
免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞

相关新闻