| 资料库

请登录

注册

三相变流器神经网络滞环控制研究论文

2018-08-24 10:24:25 公务员之家
A A
神经网络技术在人工智能、自动控制以及模式识别等领域的研究与应用正方兴未艾。而滞环电流控制是一种传统常规的电流控制方式,在功率因数校正和无功补偿等领域有着广泛的应用。

摘要:神经网络技术在人工智能、自动控制以及模式识别等领域的研究与应用正方兴未艾。而滞环电流控制是一种传统常规的电流控制方式,在功率因数校正和无功补偿等领域有着广泛的应用。该文介绍了三相变流器的BP神经网络滞环电流内环控制,该方案可实现神经网络对快速变量的控制,提高滞环控制的性能,使系统对参数的变化有较强的不灵敏性和鲁棒性。该文分析了三相电源不平衡、某一路电流反馈丢失的工况下,系统的控制特性。为了使系统在轻负载下得到良好的频谱特性,采用实时变误差增益的控制策略,并讨论了容差带下限。同时借助于矢量调制的思想,结合神经网络滞环调节器,优化系统性能,减小系统EMI和开关损耗。

关键词:神经网络;滞环;变流器

1引言

如何提高工业用电的效率和减小谐波污染已倍受关注。在工业用电中,大部分电能是要经过变换才能用于生产的。由于快速功率开关性能的进一步提高,基于脉宽调制功率变换电路已经日益成为人们提高供电系统功率因数,降低谐波污染的有力工具,因而成为人们研究的热点。其中三相全控型电压源功率变换装置,主电路如图1所示。经过十余年的研究,已经开始实用化[1,2]。三相变流器的最流行的控制方式是采用双环控制。外环用于调整输出电压,快速的电流内环调节器常用来调节交流输入电流使其跟踪期望的电流轨迹,得到单位功率因数和低谐波的电流。

为提高系统的性能,采用神经网络滞环调节器[4~6]。神经网络控制作为一种极有潜力的控制手段吸引了众多的学者,因神经网络具有并行处理能力、自学习能力、容错能力,很适合于处理非线性系统的控制问题。在相对变化较慢的速度、温度、位置等物理量控制中取得成功的应用。但在速度较快的物理量的控制中,应用较少。

在电力电子学领域,神经网络多用于系统模型辨识,故障诊断等。随着DSP的运算速度的不断增加,使神经网络在快速量控制中应用成为可能。在各种变流器直接电流控制方式中,滞环控制是一种有效、简单的控制方式,两者的结合可以发挥各自的优势。滞环电流控制方式不需要系统更多的参数,运行容易,具有快速的电流响应和限幅能力[7]。但系统开关频率不固定,在严重的非平衡条件下,系统稳定性变差,产生大量的电流谐波,同时影响开关频率的变化。本文所用调节器,可以提高系统的鲁棒性。为了减少PWM技术在变换器中的损耗并获得优化的输出电流,减小EMI,采用矢量控制的基本思想[9],给出基于滞环空间矢量控制方式的电流控制器。若使系统数字化,开关频率可由采样时间控制。

2基于神经网络的电流滞环控制器

电流滞环控制器运行时无需系统的储能器件的具体参数信息。用BP神经网络来替代传统电流滞环调节器,在滞环控制的基本控制思路上训练一个神经网络控制器来实现滞环控制控制的功能,导师信号如表1所示。基于神经网络滞环控制的系统控制结构框图如图2。三相电流的误差信号送入神经网络中,参与计算,输出开关信号S1,S3,S5,经过逻辑合成后加到主电路的驱动电路上。

图2所示神经网络调节器,该网络有3层(3-5-3结构)。节点的作用函数采用Sigmoid函数

式中是第r步迭代时第k层第i个神经元节点对于第h个样本输入时输出;为第r步时第k层第i个神经元节点对于第h个样本输入时所接收到的上1层(第k-1层)的输入总和点的阈值。

各点的权值Wij和阈值θij通过MATLAB软件求出,通过DSP编程数字实现。Wij

图3为系统在神经网络滞环控制器作用下系统仿真与实验波形。

图3a为给出阶越给定时三相电流的响应过程,表明该调节器具有较快的响应速度。

图3b,c,d给出了正常工况时的开关波形,电流波形,系统的单位功率因数波形显示。

图3e绘出了三相电压不平衡时的三相电流。电源参数为Ea=Eb=Ec/0.85。变流器基本保持了每相电压电流的同相位。

通过波形可以看出神经网络滞环控制器较好地实现了滞环控制器所有的基本功能。电流控制鲁棒性好,电流响应快的优点,同时可以限制器件的最高开关频率,提高了滞环系统抗不平衡能力。满足系统单位功率因数和低谐波的要求,同时它还具有一个新的优点:当某个电流误差信号丢失情况下仍然能正常工作。

3反馈丢失时的控制研究

反馈信号不正常是一种较为常见系统故障。常规数字滞环控制方案下,如果检测环节有故障,某一相电流反馈信号丢失,那么系统不能正常工作,系统线电流响应仿真曲线如图4a。但在神经网络控制电路中,由于神经网络的参与,调节器对单路反馈信号丢失具有一定的抑制作用。控制器检测电流反馈信号,如果连续3个周期检测到电流反馈信号为0,那么可确认反馈信号丢失,此时将该通道电流误差设为0,参与神经网络滞环调节器的运算,输出控制信号。系统实验波形如图4(b)~(d),系统仍可以得到较好的输入电流与输出电压波形,这主要归功于神经网络的数据并行处理能力。从图4(b)~(d)中可以看出系统的电压电流响应还是较好的,对于单输入信号丢失的稳态电流波形显示出了很强的鲁棒性。而在同样参数的常规滞环电流控制下,当Dia丢失时,系统不能稳定工作。

大云网官方微信售电那点事儿
免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
我要收藏
个赞

相关新闻